

Outline

- Motivation
- Challenges & Objectives
- Threshold Research
- Application to Rotorcraft
- Summary
- Challenges Ahead

Motivation

United States Air Force Damage Tolerance Initiative

- Aircraft structural failures typically occurred from fatigue cracks
- Develop a life-cycle management approach based on crack growth
- Inspect and repair instead of time-based replacement
- USAF improves fleet safety
- USAF improves operational readiness
- USAF saves millions of dollars in replacement costs and downtime

Why not rotorcraft?

Challenges & Objectives

- Rotorcraft OEM's and operators must replace expensive structure repeatedly
- DT offers improved safety at lower cost (USAF)

Challenges

- Rotorcraft structure experience more extreme operating environments than most fixed-wing aircraft
- Significant structural failures typically occur from high-cycle fatigue
- The objectives of this research are
 - Investigate the fatigue crack growth threshold test methods
 - Evaluate the applicability of using threshold data for rotorcraft design

Experimental Threshold Methods

D6AC Steel Crack Growth Rate Data

D6AC Steel Crack Growth Rate Data

Description of Crack Closure Mechanisms

- Plasticity-induced crack closure
 - Crack length
 - Cycle count

- Roughness-induced crack closure
 - Crack length
 - Material properties

- Environment-induced crack closure
 - Crack length
 - Exposure time
 - Material properties

Evaluation Of Environmental-induced Crack Closure At R = 0.1 in D6AC Steel, C(T) Specimen

Direction of crack growth

∆K increasing

∆K decreasing

- Interpretation
 - Threshold region appears darker in ∆K decreasing test
 - As ∆K approaches 10 MPa m^{1/2} in ∆K increasing test, fracture surface lightens and crack growth rate is equivalent to high-R "closure free" data
 - Closure most likely roughness or environment

Evaluation Of Environmental-induced Crack Closure

Lab Air

3 mm

Verification of Environment-induced Crack Closure using Constant ∆K data for 7.7 MPa m^{1/2} in D6AC Steel

Comparison of Constant ∆K to Load Reduction Data

Assumption:

Steady-state plasticity- and roughness-induced crack closure

Assumption:

Steady-state environment -induced crack closure

Crack Closure Development in D6AC Steel

Losing Sight of the Forest

Challenges to Implementing Damage Tolerance in Rotorcraft

- Stress-based life cycle is defined by a material endurance limit
- Well-defined laboratory test method
- Damage tolerancebased life cycle is defined by a material endurance limit, e.g. threshold
- Poorly defined laboratory test method

Summary of Threshold Observations in D6AC Steel C(T) Specimens

Closure Mechanism	Threshold Stress Intensity (MPa m ^{1/2})
Closure-free	2.52
Plasticity	3.19
Roughness	4.82
Environment	6.45

R = 0.1

- Results from threshold test methods are highly dependent on crack closure mechanisms
- Design and life prediction of high cycle fatigue structure is reliant on a full understanding of the threshold test methods and laboratory environment

Challenges Ahead

- Identify what thresholds are important for rotorcraft damage tolerance.
- Is designing to the fatigue crack growth threshold any different than the endurance limit?
- When does inspection for cracks become affordable or prudent?
- Does DT for rotorcraft improve safety?
- How does one design for stable, inspectable crack growth?